The West End Water Works.—The Select and Common Council, and other officials, paid a visit yesterday afternoon to the West End Water Works, by invitation of Messrs. Berkthiebes and Treuter, the Company's agents, tabled, with the good things of life, was placed on the engine-room.

After inspecting the works the party indulged in the俗话说的 in the free air.

Benjamin E. Miller, the engineer called up, delivered a neat and appropriate speech, of which the following is a摘要： After a few preliminary remarks, he said that during the summer of 1892 the works were inspected by the Board of Commissioners of the District of West Philadelphia, and after due consideration, the Board was satisfied that the water was being conveyed at the least cost, and that the works were in a state of good repair, and that the water was fit for drinking.

In the following spring of '93 the plan of the works was somewhat changed, principally the character of the engines, which, with the other alterations of the original plan added to the cost of the work, all of which was considered necessary by the majority of the Board then in power, this necessarily delayed the completion of the works, but being compelled to submit to such inconvenience as these obstacles would necessarily present, two engines were erected at the cost of $130,000.

The history of these, as is somewhat obviated, but we have already attended the operations of the West End, have discovered that the water was supplied to the various districts through a network of pipes, the supply amounting to two and four million gallons per day, sufficient to supply a population of ten thousand people.

The Tower, or stand pipe, is on an elevation of about 100 feet above the tide-water, the tower is 5 feet in diameter, 120 feet high, making the entire height above tide-water 172 feet, which gives sufficient force to the water to supply the highest point in the city, the city of Philadelphia.

The product of recovering any considerable portion is for the purpose of giving an outline of the history of these works, and the importance of the contracor, who may well be proud of their achievement.

In conclusion, let me say, that the water from the river passes through a tunnel 20 feet deep, 4 feet wide, and 52 feet long, into a chamber 10 feet deep, where it passes through a system of filters of different sorts, which particles are prevented from passing. In this chamber is also a system of piping and conduits extending from the right hand to the left, where the water to the supplies, which is 166 feet long, 75 feet wide, and 16 feet deep. From the supplying reservoir, the water is conveyed to the head of the stands, from which it is pumped, and then conveyed by the pipes in the district.

The work is done by Messrs. Hollis & Bullers, each shop in diameter, and 32 feet long, with lateral from 3 to 5 feet in diameter. The water when pumped into the stand pipe, which 5.5 feet in diameter and 100 feet high, has an elevation of 222 feet above tide-water, giving it a head varying from 125 to 225 feet. The capacity of lifting (with ease) one million gallons in 24 hours.

There are over 10 miles of pipe laid in the district, and 167 fire-places set up.

The water being raised to such a great elevation, makes fire-fighting unnecessary. One of the pumps will supply as much water as could be thrown upon a fire by 10 feet class Fire Engines, and under such a pressure that it may be heated to the top of the building in the district.

The works with the stand pipe will supply from 20,000 to 30,000 persons, and the contemplated reservoirs are constructed, 70 to 80 feet.

The Steam Engines are remarkable for the small amount of fuel they consume, being less than one half the amount of coal used in the same proportion in the city, the city of Philadelphia.

The fire-fires are set up in the city, the city of Philadelphia, and 167 fire-places set up.

The product of recovering any considerable portion is for the purpose of giving an outline of the history of these works, and the importance of the contracor, who may well be proud of their achievement.

In conclusion, let me say, that the water from the river passes through a tunnel 20 feet deep, 4 feet wide, and 52 feet long, into a chamber 10 feet deep, where it passes through a system of filters of different sorts, which particles are prevented from passing. In this chamber is also a system of piping and conduits extending from the right hand to the left, where the water to the supplies, which is 166 feet long, 75 feet wide, and 16 feet deep. From the supplying reservoir, the water is conveyed to the head of the stands, from which it is pumped, and then conveyed by the pipes in the district.

The work is done by Messrs. Hollis & Bullers, each shop in diameter, and 32 feet long, with lateral from 3 to 5 feet in diameter. The water when pumped into the stand pipe, which 5.5 feet in diameter and 100 feet high, has an elevation of 222 feet above tide-water, giving it a head varying from 125 to 225 feet. The capacity of lifting (with ease) one million gallons in 24 hours.

There are over 10 miles of pipe laid in the district, and 167 fire-places set up.

The water being raised to such a great elevation, makes fire-fighting unnecessary. One of the pumps will supply as much water as could be thrown upon a fire by 10 feet class Fire Engines, and under such a pressure that it may be heated to the top of the building in the district.

The works with the stand pipe will supply from 20,000 to 30,000 persons, and the contemplated reservoirs are constructed, 70 to 80 feet.

The Steam Engines are remarkable for the small amount of fuel they consume, being less than one half the amount of coal used in the same proportion in the city, the city of Philadelphia.